Despite the site-specific and individual nature of sustainable agriculture, several general principles can be applied to help growers select appropriate management practices:
- Selection of species and varieties that are well suited to the site and to conditions on the farm;
- Diversification of crops (including livestock) and cultural practices to enhance the biological and economic stability of the farm;
- Management of the soil to enhance and protect soil quality;
- Efficient and humane use of inputs; and
- Consideration of farmers' goals and lifestyle choices.Selection of site, species and variety
Preventive strategies, adopted early, can reduce inputs and help establish a sustainable production system. When possible, pest-resistant crops should be selected which are tolerant of existing soil or site conditions. When site selection is an option, factors such as soil type and depth, previous crop history, and location (e.g. climate, topography) should be taken into account before planting.
Diversity
Diversified farms are usually more economically and ecologically resilient. While monoculture farming has advantages in terms of efficiency and ease of management, the loss of the crop in any one year could put a farm out of business and/or seriously disrupt the stability of a community dependent on that crop. By growing a variety of crops, farmers spread economic risk and are less susceptible to the radical price fluctuations associated with changes in supply and demand.
Properly managed, diversity can also buffer a farm in a biological sense. For example, in annual cropping systems, crop rotation can be used to suppress weeds, pathogens and insect pests. Also, cover crops can have stabilizing effects on the agroecosystem by holding soil and nutrients in place, conserving soil moisture with mowed or standing dead mulches, and by increasing the water infiltration rate and soil water holding capacity. Cover crops in orchards and vineyards can buffer the system against pest infestations by increasing beneficial arthropod populations and can therefore reduce the need for chemical inputs. Using a variety of cover crops is also important in order to protect against the failure of a particular species to grow and to attract and sustain a wide range of beneficial arthropods.
Optimum diversity may be obtained by integrating both crops and livestock in the same farming operation. This was the common practice for centuries until the mid-1900s when technology, government policy and economics compelled farms to become more specialized. Mixed crop and livestock operations have several advantages. First, growing row crops only on more level land and pasture or forages on steeper slopes will reduce soil erosion. Second, pasture and forage crops in rotationenhance soil quality and reduce erosion; livestock manure, in turn, contributes to soil fertility. Third, livestock can buffer the negative impacts of low rainfall periods by consuming crop residue that in "plant only" systems would have been considered crop failures. Finally, feeding and marketing are flexible in animal production systems. This can help cushion farmers against trade and price fluctuations and, in conjunction with cropping operations, make more efficient use of farm labor.
Soil management
A common philosophy among sustainable agriculture practitioners is that a "healthy" soil is a key component of sustainability; that is, a healthy soil will produce healthy crop plants that have optimum vigor and are less susceptible to pests. While many crops have key pests that attack even the healthiest of plants, proper soil, water and nutrient management can help prevent some pest problems brought on by crop stress or nutrient imbalance. Furthermore, crop management systems that impair soil quality often result in greater inputs of water, nutrients, pesticides, and/or energy for tillage to maintain yields.
In sustainable systems, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. Methods to protect and enhance the productivity of the soil include:
- using cover crops, compost and/or manures
- reducing tillage
- avoiding traffic on wet soils
- maintaining soil cover with plants and/or mulchesConditions in most California soils (warm, irrigated, and tilled) do not favor the buildup of organic matter. Regular additions of organic matter or the use of cover crops can increase soil aggregate stability, soil tilth, and diversity of soil microbial life.
Efficient use of inputs
Many inputs and practices used by conventional farmers are also used in sustainable agriculture. Sustainable farmers, however, maximize reliance on natural, renewable, and on-farm inputs. Equally important are the environmental, social, and economic impacts of a particular strategy. Converting to sustainable practices does not mean simple input substitution. Frequently, it substitutes enhanced management and scientific knowledge for conventional inputs, especially chemical inputs that harm the environment on farms and in rural communities. The goal is to develop efficient, biological systems which do not need high levels of material inputs.
Growers frequently ask if synthetic chemicals are appropriate in a sustainable farming system. Sustainable approaches are those that are the least toxic and least energy intensive, and yet maintain productivity and profitability. Preventive strategies and other alternatives should be employed before using chemical inputs from any source. However, there may be situations where the use of synthetic chemicals would be more "sustainable" than a strictly non-chemical approach or an approach using toxic "organic" chemicals. For example, one grape grower switched from tillage to a few applications of a broad spectrum contact herbicide in the vine row. This approach may use less energy and may compact the soil less than numerous passes with a cultivator or mower.
Consideration of farmer goals and lifestyle choices
Management decisions should reflect not only environmental and broad social considerations, but also individual goals and lifestyle choices. For example, adoption of some technologies or practices that promise profitability may also require such intensive management that one's lifestyle actually deteriorates. Management decisions that promote sustainability, nourish the environment, the community and the individual.
0 Comment to "Sustainable Crop Production and Agriculture"
Post a Comment